
AI駆動開発に必要な人材とは?考え方や活用ポイント、内製化・外注すべき領域を徹底解説!
PM、オーケストレーター、データエンジニアが連携する「チーム設計」こそが重要 エンジニアの役割は「書くこと」から「ビジネス要件をAIに正しく伝え、成果物を厳格に...
生成AI、画像認識、AI開発企業等のAI会社マッチング支援サービス

PM、オーケストレーター、データエンジニアが連携する「チーム設計」こそが重要 エンジニアの役割は「書くこと」から「ビジネス要件をAIに正しく伝え、成果物を厳格に...

LLMに自社の開発ルールや既存コードを正しく理解させるには、RAG(検索拡張生成)を組み込んだデータパイプラインによる継続的な情報供給が不可欠 エンジニアの頭の...

AI駆動開発ではコード行数を予測することに意味はなく、データの質に基づいた仮説検証を何回繰り返すかというサイクル数で工数を管理 完璧な設計から始めるのではなく、...

従来のインフラ・アプリ保護に加え、「学習データ(汚染)」「モデル(盗難・解析)」「判断ロジック(敵対的サンプル)」という3つの新領域を守る設計 AIは脆弱なコー...

AI駆動開発は、単なるコード補完から、要件を理解して自律的に動く「エージェント型」へと進化している 検証フェーズ(AutoML)、本番運用(統合プラットフォーム...

プログラミングの世界は日々進化しており、より効率的で生産的な開発手法が求められています。そんな中で注目を集めているのが、生成AIを用いてプログラミングの世界に革...

AI駆動開発は開発の主役をAIエージェントへ移し、人間を「意思決定と検証」に集中させる組織変革 成功の鍵は、MCP等の標準規格を用いたコンテキスト提供の仕組み化...

VLA(Vision-Language-Actionモデル)は、AIが「見て(Vision)」「言葉を理解し(Language)」「行動する(Action)」を...

世界モデルは物理的な因果関係を学習して未来をシミュレーションするAIであるのに対し、LLMは言語データから次に来る言葉を統計的に予測するAI 世界モデルはロボッ...

自己教師あり学習は人間による正解ラベル(アノテーション)付与を必要とせず、データ自身から学習用の正解を自動生成する 特定のタスクを解く前に、世界の構造や文脈を理...