
LLM(大規模言語モデル)の性能評価方法とは?指標設定方法・改善サイクル・注意点までLLMOpsサイクルを徹底解説!
LLMの性能は、公開ベンチマークの数値だけでなく、「定量」「定性」「AIによる評価」という3つの異なる視点を組み合わせて多角的に評価 自社の活用シーン(ユースケ...
生成AI、画像認識、AI開発企業等のAI会社マッチング支援サービス

LLMの性能は、公開ベンチマークの数値だけでなく、「定量」「定性」「AIによる評価」という3つの異なる視点を組み合わせて多角的に評価 自社の活用シーン(ユースケ...

エージェンティックAIは、特定のツールの名称ではなく、AI自身が計画・実行・自己修正を繰り返して自律的に目的を達成する「設計思想」 実装には「ReAct(思考と...

多くの企業がChatGPTの活用を進める中で、機密情報の取り扱いやハルシネーションといった課題に直面しています。特に、顧客情報や社内の機密データを扱う部門では、...

RAGの価値は「作って終わり」ではなく、データの陳腐化や検索精度の悪化を防ぐ運用体制こそが要 データの品質と鮮度を保つ「ナレッジ管理の仕組み化」と、システムの劣...

RAGの回答精度は、参照するデータの品質が直接影響するため、データ前処理は「ハルシネーション」を防ぎ、検索の精度と速度を高めるための不可欠 効果的なデータ前処理...

生成AIは、膨大なログ解析や未知の脅威検知を自動化・高速化し、誤検知を減らします 高度な分析やインシデント対応の優先順位付け(トリアージ)をAIが支援するため、...

ヘルプデスクやカスタマーサポート部門では、問い合わせ対応の遅延、担当者の疲弊、属人化など様々な問題が起きています。システムを活用して解決しようとしても、一般的な...

多くの企業で、情報が部署やツールごとに「サイロ化」し多様なデータ形式が混在しているため、従来のキーワード検索では必要な情報にたどり着くのが困難 LLMとRAGを...

ChatGPTのジェイルブレイクは、特殊なプロンプトでAIの安全機能を回避する攻撃手法 機密情報の漏洩、誤情報(ハルシネーション)の増加、法的・倫理的に問題のあ...

RAGは検索した情報を基に回答するため、投入するデータが不正確・古い・不十分だとLLMの性能に関わらず出力の質が低下し、ハルシネーションの原因に 情報の「正確性...