
【Meta】Omnilingual ASRとは?LLMの技術を音声認識に応用した特徴、性能、料金、利用方法まで徹底解説!
1,600以上の言語に対応し、500以上の低リソース言語に初めてAI文字起こしを実現したオープンソースASRモデル 少数の音声サンプルで新言語を追加可能なインコ...
生成AI、画像認識、AI開発企業等のAI会社マッチング支援サービス

1,600以上の言語に対応し、500以上の低リソース言語に初めてAI文字起こしを実現したオープンソースASRモデル 少数の音声サンプルで新言語を追加可能なインコ...

世界モデルは物理的な因果関係を学習して未来をシミュレーションするAIであるのに対し、LLMは言語データから次に来る言葉を統計的に予測するAI 世界モデルはロボッ...

未知物体検出は、広く普及する画像認識AI技術の中でも特に注目される分野の一つです。未知物体検出は学習していない未知の物体を「未知」として認識し、検出を可能にする...

生成AI(ジェネレーティブAI)は、AI技術の中でも特に注目を集める分野です。テキスト生成(LLM)、画像生成、音声生成など、多様な形式のコンテンツを自動生成す...

画像認識は、製造業で画像判定による品質管理の自動化、小売業での在庫最適化、セキュリティ強化など、その応用範囲が拡大していますが、特にAIを活用した画像認識のビジ...

AIエージェントは自律的に判断・実行を繰り返すため、推論のプロセスを可視化するAgentOpsが実務運用の成否を分ける 従来のLLM管理に加え、ツールの使用状況...

AIエージェント開発は、業務範囲の定義から知識ベースの構築、UI/UX設計、API連携、実装、運用・改善に至る体系的な手順で進められる。 開発には、LLM(大規...

AIエージェントは推論ループを行うため、API利用料(トークン消費)が指数関数的に増大するリスクがあり設計段階でのコスト制御が不可欠 初期の業務整理と技術検証を...

AIエージェントは、与えられた目標に対し、LLM等を活用して自律的に環境を認識・計画・行動するAIシステム 事前に定義されたワークフローに基づいてタスクを実行す...

AIエージェントは従来のシステムのように仕様通りに組んで終わりではなく、ゴールと制約を与え、運用を通じて挙動を改善し続ける 禁止事項や判断停止条件、人間が最終承...